世界杯赛场风云再起:日本队因违规行为被罚,球队士气受挫 2025-05-01 08:36:41
曼城队球员号码背后的故事:从1号到99号,每个数字都承载着荣耀与传承 2025-07-19 08:07:13
上海明珠长跑节 2025-10-17 19:33:24
清水鹿岛鹿角比赛直播:精彩对决,不容错过的足球盛宴 2025-05-14 03:01:33
男子双人三米板跳水世界杯精彩瞬间:巅峰对决背后的看点与解读 2025-07-16 05:32:37
足坛最强中场球员:谁是当今绿茵场上的指挥大师? 2025-05-18 21:13:08
澳門特別行政區政府體育局 2025-10-07 15:37:03
壮中年健美比赛照片:世界杯赛场外的另一场力量与美的较量 2025-06-05 12:12:07
四川专业运动员薪资揭秘:世界杯背后的汗水与收入差距 2025-06-13 15:22:47
[讨论]球员潜力多少才算中上水平? 2025-08-17 02:42:22

Python算法学习——枚举算法(适用于蓝桥杯省赛)!附带例题讲解

传数据#####

[木子加贝]:

from rknnlite.api import RKNNLite

import cv2

import numpy as np

# 后处理函数

def sigmoid(x):

return 1 / (1 + np.exp(-x))

def process_yolov5_output(outputs, img_size=(640, 640), conf_threshold=0.4, iou_threshold=0.5):

predictions = outputs[0][0]

boxes = predictions[:, :4]

confidences = sigmoid(predictions[:, 4:5])

class_scores = sigmoid(predictions[:, 5:])

scores = confidences * class_scores

class_ids = np.argmax(scores, axis=1)

max_scores = np.max(scores, axis=1)

mask = max_scores > conf_threshold

boxes = boxes[mask]

class_ids = class_ids[mask]

scores = max_scores[mask]

boxes[:, 0] = boxes[:, 0] - boxes[:, 2] / 2

boxes[:, 1] = boxes[:, 1] - boxes[:, 3] / 2

boxes[:, 2] = boxes[:, 0] + boxes[:, 2]

boxes[:, 3] = boxes[:, 1] + boxes[:, 3]

indices = cv2.dnn.NMSBoxes(

boxes=boxes.tolist(),

scores=scores.tolist(),

score_threshold=conf_threshold,

nms_threshold=iou_threshold

传数据#####

[木子加贝]:

from rknnlite.api import RKNNLite

import cv2

import numpy as np

# 1. 初始化 RKNNLite 对象

rknn = RKNNLite()

# 2. 加载 RKNN 模型

MODEL_PATH = 'yolov5.rknn' # 替换为你的模型路径

ret = rknn.load_rknn(MODEL_PATH)

if ret != 0:

print("加载 RKNN 模型失败!")

exit(1)

# 3. 初始化 RKNN Lite 运行环境

ret = rknn.init_runtime()

if ret != 0:

print("初始化 RKNN 运行环境失败!")

exit(1)

# 4. 加载并预处理输入图像

IMG_PATH = 'input.jpg' # 替换为你的输入图片路径

img = cv2.imread(IMG_PATH)

img = cv2.resize(img, (640, 640)) # 根据模型输入大小调整

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

img = img / 255.0 # 归一化

img = np.expand_dims(img, axis=0).astype(np.float32)

# 5. 推理

outputs = rknn.inference(inputs=[img])

# 6. 处理推理结果

# 根据 YOLOv5 的输出格式解析结果

# 通常需要后处理(如 NMS)来获取最终的检测框

print("推理结果:", outputs)

# 7. 释放 RKNN 资源

rknn.release()

Pytorch深度学习环境配置教程

[木子加贝]:

# 安装依赖

sudo apt update

sudo apt install python3 python3-pip

pip3 install fastapi uvicorn transformers torch sentencepiece

# 创建服务脚本 (model_api.py)

```doubaocanvas identifier="deepseek-web-api" type="general_code" title="DeepSeek模型API服务">

```python

from fastapi import FastAPI, HTTPException

from pydantic import BaseModel

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

app = FastAPI()

# 模型加载

model_name = "deepseek-ai/deepseek-coder-1.3b-base" # 根据实际路径调整

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(

model_name,

torch_dtype=torch.float16, # 使用半精度减少内存占用

device_map="auto", # 自动管理设备分配

)

# 定义请求模型

class GenerationRequest(BaseModel):

prompt: str

max_length: int = 100

temperature: float = 0.7

# 生成API

@app.post("/generate")

async def generate_text(request: GenerationRequest):

try:

Pytorch深度学习环境配置教程

[木子加贝]:

# 安装依赖

sudo apt update

sudo apt install python3 python3-pip

pip3 install fastapi uvicorn transformers torch sentencepiece

# 创建服务脚本 (model_api.py)

```doubaocanvas identifier="deepseek-web-api" type="general_code" title="DeepSeek模型API服务">

```python

from fastapi import FastAPI, HTTPException

from pydantic import BaseModel

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

app = FastAPI()

# 模型加载

model_name = "deepseek-ai/deepseek-coder-1.3b-base" # 根据实际路径调整

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(

model_name,

torch_dtype=torch.float16, # 使用半精度减少内存占用

device_map="auto", # 自动管理设备分配

)

# 定义请求模型

class GenerationRequest(BaseModel):

prompt: str

max_length: int = 100

temperature: float = 0.7

# 生成API

@app.post("/generate")

async def generate_text(request: GenerationRequest):

try:

一、新手学习爬虫第一课 对网站发起请求(基于python语言)

CSDN-Ada助手:

恭喜你这篇博客进入【CSDN每天最佳新人】榜单,全部的排名请看 https://bbs.csdn.net/topics/619551680。